

Modular Optical Aperture Building Blocks (MOABB)

Christopher V. Poulton, Matthew J. Byrd, Peter Russo, Erman Timurdogan, Michael Whitson, Ehsan Hosseini, Benjamin Moss, Zhan Su, Diedrik Vermeulen, and Michael R. Watts (CEO)

Analog Photonics

Driving Applications: Solid-State Beam Steering, Chip-Scale LiDAR, and Free-Space Communication

Program Goal

Specification	Phase I BAA	Phase II BAA	Phase III BAA
Aperture Size	1mm²	lem²	10cm ²
P-P Sweep Time	40us	10as	lus
Field of Regard	70°x12°	100°x14°	110°x16°
Aperture Fill Factor	50%	70%	95%
# simultaneous beams	- 1	16	16
RF Bandwidth	3 GHz	8 GHz	8 GHz
Wall-plug Efficiency	1%	2%	5%
Radiated Power Density	0.5W/cm ²	0.5W/cm²	1W/cm²
% Optical Power in formed beams	50%	80%	95%

- integrated flat optical aperture with a 10cm2 area
- Based on tiling smaller unit-cell optical apertures
- Enables high-power optical beam transmitting and receiving with solid-state beam steering

Integration Platform

photonic systems

Silicon photonics is a chip technology enabling optical "circuits" based on laser light guided in silicon optical nanowires.

Optical Phased Arrays

Array Factor

Element Factor **RADAR Phased Array**

- Phased arrays are arrays of electro-magnetic antennas with individual phase control
- Tuning the phases allows for arbitrary pattern

2D Beam Steering

- 2D beam steering is achieved by utilizing element phase shifters and changing wavelength
- Steering ranges up to 70° x 18° have been demonstrated with pitches down to 1.35um

Integrated FMCW LiDAR

- Distance is proportional to electrical beat frequency

- Coherent LiDAR system created with two
- Up to 40m real-time LiDAR demonstrated
- the velocity of targets

Free-Space Communication Passive OPAs

Active OPAs

- 50m free-space data link achieved at a 10Gbps
- Active demo of OPA-based free-space communication successful with beam steering

Laser Integration

- The high integration of silicon photonics allows for co-packaging with an integrated III/V laser
- Above shows an optical phased array chip copackaged with a III/V sampled grating distributed Bragg reflector (SG-DBR) laser
- Optical coupling between the two chips is realized with two ball lenses that performs mode-matching between the two couplers

Applications

Automotive

Robotics

Aerial Vehicles

